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REPORT No. 871

DETERMINATION OF ELASTIC STRESSES IN GAS-TURBINE DISKS

By S. S. _IANSON

SUMMARY

A method is presented for the calculation of elastic stresses

in symmetrical disks typical of those of a high-temperature gas
turbine. The method is essentially a finite-difference solution

of the equilibrium and compatibility equations for elastic
stresses in a symmetrical disk. Account can be taken of point-

to-point variations in disk thickness, in temperature, in elastic
modulus, in coefficient of thermal expansion, in material density,
and in Poisson's ratio. No numerical integration or trial-and-

error procedures are involved and the computations can be per-

formed in rapid and routine fashion by nontechnical computers
with little e_.gineering supervision. Checks on problems .for
which exact mathematical solutions are known indicate that the

method yields results of high accuracy.
Illustrative examples are presented to show the manner of

treating solid disks, disks with central holes, and disks con-
structed either of a single material or of two or more welded
materials. The effect of shrink fitting is taken into account by

a very simple device.

INTRODUCTION

One of the problems in the design of gas turbines is the
determination of the stresses in the turbine disk under

operating conditions. Calculation of the elastic-stress dis-
tribution is a first step in the determination of the true stress
distribution. _This stress distribution is based on the assump-

tion of linearity of stress with strain and differs from the true
stress distributions, which may contain stresses beyond the

proportional elastic limit of tile material.
The equations for the elastic-stress distribution in sym-

metrical disks are well known. Their solution may, however,

offer considerable difficulty. One difficulty encountered in
calculation of the operating stresses in disks with high-

temperature gradients is that the physical properties of the
materials, such as elastic modulus, Poisson's rwtio, and
coefficient of thermal c: pansion, vary with the temperature
and therefore have a different value at each location in the

disk. In addition, thethickness of the turbine disk varies
from radius to radius. If the disk consists of portions of

different materials welded to each other, the density may

vary from one section to the other. Shrink fitting and weld-

. ing of the component parts at elevated temperatures also
introduce spe(.ial stress problems. Attempts to find complete

analytical solutions for the stress problems that take inlo

account shrink fitting and point-to-point variation of tho

physical properties and of the disk thickness result in ulath-
ematical complexities; approximate solutions are therefore

usually found by numerical methods.
Thompson in reference 1 gives a numerical approach to the

turbine-disk problem that takes into account point-to-point
variation in disk thickness and in all physical properties

except Poisson's ratio. A method capable of easily account-

ing for shrink fitting and for the variation in Poisson's ratio
as well as in the other properties was developed in 1945 at
the NACA Cleveland laboratory and is presented in the

analytical section herein. The method is essentially a finite-
difference solution of the differential equations of stress in a

rotating disk and incorporates several advantageous featm'es
uncommon to other forms of solution. For example, numer-

ical integration and trial-and-error processes have been
completely avoided, which makes it possible for nontechnical

computers to carry through the entire solution rapidly and
with little engineering supervision.

In the second section of this report, illustrative examplea

are presented to show the manner of treating a solid disk and
a disk with a central hole for application to a gas turbine.

The examples are self-explanatory and may be used as a

guide for the solution of turbine-disk problems without
reference to the analytical section of the report in which the
basis for the solution is derived.

The method also has applicability to the study of streuses

in rotating disks other than that in the gas turbine. It has
been applied, for example, to disks of axial-flow compressors
in which the only complicating factor is variable disk thick-
ness. For such application tile main advantages of the
method are the routine nature of the calculation, the rapidity
with which the calculations can be made, and the accuracy

of the final results.

ANALYSIS

SYMBOLS

The following symbols are used:
A point midway between nth and (n-1)st point stations
E elastic modulus of disk material, (lb/sq in.)
h axial thickness of disk, (in.)

r radial distance, (in.)
u radial displacement of any point on disk as disk

passes from unstressed to stressed condition

1
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coefficient of thermal expansion between actual tem-

perature and temperatm'e at which there is zero
thermal stress, (in./(in.)(°F))

AT temperature increment above that at which there is
zero thermal stress

_r radial strain, (in./in.)

_, tangential strain, (in./in.)
tL Poisson's ratio

p mass density of disk material, ((lb)(see2)/in. 4)
¢_ radial stress, (lb/sq in.)
at tangential stress, (lb/sq in.)

angular velocity of disk, (radians/sec)
The following supplementary subscripts are used for

denoting values of the preceding symbols in connection with
the finite-difference solution:

n nth point station
n-1 (n-1)st point station
a station at the smallest radius of the disk considered

(For a disk with a central hole, this station is taken
at the radius of the central hole; for a solid disk,

this station is taken at a radius of about 5 percent oI
rim radius.)

b rim of disk or base of blades

Example of the use of double subscript:
at.,., radial stress ar at station n-1

The following supplementary symbols denote combina-
tions of the foregoing symbols arising in the analysis:

At., ) coefficients defined by equations
At,

B_,. t a,,.=A_,,, at,,,+ B_,.Bt.,_ at.n=Ae,,, at.a+ Bt..

C_=r,h,

C, t_ -L (l+tt')(r'--r--0
"--E-," 2E, r.

1
Dn=6. (r_--r__l)h_

D' = 1 _ (l+_.) (r_--r.__)
" E," 2E, r,

F,,=r,__h,__

F t _n-_ (1+___) (r_--r,__)
"-- E__I 2E,_lr,._ .......

G,_:I (r,_--rn-l)h__x

Gt = l (1 +___) (r_--r___)
E__t 2E,-1r_-i

H= 1-
2 _°2(rn--rn-t) (P"h"r_2+P_-lh_-lr_-d)

H'.=a._T_--a._I,_T._,

! t

Kt C,,F,.cCt.F,,
"--C',,D.--C.D'.

L_ _ G,,,D.+._D,,
,,-- C%D,_CnDt

C',G+GGt.
L'. = - C'. D. -- C..D',_

1"4" D -l-r4 D'

n-- C'nD.-- CnD'.

t S tat, __C .H.+C. .

ASSUMPTIONS

The assumptions are made that stress is proportional to
strain and that the disk material is completely elastic at the
stress distribution induced by the centrifugal and thermal

effects. All variables of material properties and operating
conditions are assumed to be symmetrical about the axis of
rotation. Axial stresses are neglected and at any radius the

radial and tangential stresses are assumed to be uniform
across the thickness of the disk. Temperatures are taken in
the central plane perpendicular to the axis of the disk.

OUTLINE OF METHOD

In a thin rotating disk of variable thickness, the state of

stress at any radius can be completely defined by the two

principal stresses, the radial and tangential stresses ¢_ and at,
respectively. Two equations are therefore necessary to deter-_

mine the two unknown stresses. The first of these equations
can be obtained fi'om the conditions of equilibrium of an
element of the disk; the second, from the compatibility con-.
ditions, which are mathematical statements of the interrela-

tion between the radial and tangential strains in a sym-
metrical disk.

The equilibrium and compatibility equations i-esult in

differential form defining relations between the stresses a_
radius r and those at a radius infinitesimally removed fi'om r.

Except for some special cases, the solutions of these equations
are difficult to obtain. In order to facilitate solution, the
differential equations are rewritten in finite-difference form

relating the stresses at radius r with those at a radius finitely
removed from r. By means of the finite-difference equations,
the stresses at an arbitrary finite number of stations along
the disk radius are expressed in terms of the stresses at a

single reference station near the center of the disk. For a
disk with a central hole the reference station is chosen at. the

inside radius, where the radial stress is zero; hence, the

stresses at all stations in the disk are expressed in terms of the
single unknown, the tangential stress at this station. For a
solid disk, the reference station is chos¢(n at a point near the

center of the disk (at a radius of about 5 percent of the disk
radius). In this region the radial and tangential stresses can
be assumed to be approximately equal; again, therefore, the

stresses at all stations are expressed in terms of a single
unknown. The unknown can then be determined by the

boundary conditions at the rim of the disk where the radial
stress is equal to the centrifugal blade loading. When the
radial stress at the rim, expressed in terms of the tangential
stress at the reference station, is equated to the hla(le loading,
the tangential stress at the reference station is evahtated.

After the tangential stress at the reference station has been
determined, all the other stresses, expressed in terms of this
stress, can be evaluated.
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DIFFERENTIAL EQUATIONS

The equilibriuin equation, as given in reference 2 (p. 374),
using the notation of this paper, is

d (rhcrr)_hcrtq_poa2hr2= 0 (1)
dr

The compatibility relation is obtained by elimination of u

from the stress-strain displacement equations

,r----_--%_--f-at+aaT (2)

u__ at-_ar+ nAT (3)6t= r

Equation (3) is subtracted from equation (2) to eliminate _

or

But

du u (1+_,)(.,--.,)
dr r E (4)

rdu--udr (1 +_) (qr-- _t)
rdr -- E (5)

rdu--udr d C_ ) (6)r2dr --dr

Therefore, by equations (3), (5), and (6),

d //q,'_ d /tt_r'_Ad (l-4-tt)(qr--_t)=0 (7)
dr \El---dr \ E ] ' dr (nAT) Er

Equations (1) and (7), together with a ktmwledge of the
boundary conditions, are sufficient to solve for the two
unknowns _, and a,. Because p, E, it, a, AT, and h arc, in

general, functions of the radius r, the equations cannot
readily be solved in their differential form; a finite-difference
solution was therefore derived.

FINITE-DIFFERENCE E(_UATIONS

The translation of differential equations into finite-

difference form to facilitate solution is common in- engineering
practice. The method has, in fact, been applied in limited
fashion to the solution of the steam-turbine disk problem
(reference 2, pp. 398-400). This application neglects, how-

ever, the point-to-point variation in physical properties, and
therefore no application to the gas-turbine disk, in which
tllcre is appreciable variation in properties h'om hub to rim,
is made. In addition, the solution of the equations involves

an inte-il )lation procedure, the elimination of which could
considerably reduce the amount of calculation necessary for

a solution and increase the accuracy of the final results.

A number of discrete point stations are chosen along the
disk radius as shown in figure 1 (a). If it is assumed that the
stress distribution in the disk has already been determined,

" all quantities appearing in equations (1) and (7) are known
at each of the point stations and the valucs of corresponding
quantities at the point A midway between tim nth and (n-1)st
point stations can be approximately determined. For

(a)

"-------- 7"a-I • _
_---------_r.,, , _.,,_,)/2-r A------.

(b)

(a) Location of point stations.
(b) Value of typical function midway between point stations n and _t-1,

FIGURE l.--Sketches used to derive finite-difference equations for stresses in symmetrical

rotating disk,

example, in the plot of rhar against r (fig. 1 (b)), the radius at
point A is expressed as

l
ra=_ (r__,q-r=)

the value of rhar is

1
( rh(rr) A -._ _ (r,_,h__,(r .... , + r_h_r._)

and the slope of the curve at point A, which is approximately
equal to the slope of the chord joining points n and n-l, is
defined as

d (*'h_)_ r_h_a_,n--r,,_ih__l_ .... i
dr "_ rn -- rn- l

In a similar way, the values of each of the other variables

entering ihto the equations can be evaluated for point A.
If the evaluations are correct, the quantities at A mnst satisfy

equations (1) and (7). These equations therefore become, in
finite-difference form

r_h,a_._--r__,h__,a .... I h,_z,,_+h_--,Z,,n--1 +
rn--_"n-* 2

Oj 2
/' ') r "2 (pnh_ =-q-p=_,h,__ =_L-)=0 (8)
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and

fit.n fit.n--I _nfir.n t-l,n--lfir.n--I

E. E._, E. E.__ +a.AT.--a.__AT.__
Fn--rn--I rn--rn-i rn--rn-I

½ [(1 +g.)(fi...--fit,.)E.r. _ (1-+-.,,_,)(O-E._ar._,.... '-- a""-')l--OA-- (9)

which reduce to

and
C.fi,,.--D.fi,,.=F.fi .... l+G.fi,,.-1--H. (10)

C'.fiT..--D'.fit,.=F'.a .... ,--G'.fit,.-l+H'_ (11)

SOLUTION OF FINITE-DIFFERENCE EQUATIONS

Equations (10) and (11) represent two equations from
which fiT,. and fit,. can be expressed in terms of fi,,.-t and

fit,n-t. If the linear nature of the equations and the possi-
bility of successive application of the equations to proceed

from one station to the next are considered, the stresses at
any station can ultimately be expressed in linear terms of
the stresses at any other station. It will be convenient to
express the stresses at all stations in _erms of the stresses at

the station a. At this station, the unknown value is the
tangential stress at.a; hence, the stresses at station n are
expressed in the linear terms

fir,_= Ar.._ t,a+ B,m

a t,,t= At, na t,a"-_- Bt,n (12a)

and those at station n--1 in the form

at..-l:At,._lat,a+ Bt, n_l (12b)

where the coefficients A .... B .... At,., and B,.. are as yet to
be determined.

The substitution of equations (12a) and (12b) into equa-
tions (10) and (11) and the separation of the terms with and
without at._ result in the equations

and

(C.A.,.--D.A,,.--F.A .... ,-- G.A t..-,) at,a+

(C.B,,.-- D.Bt,.-- F.B .... ,-- G.Bt, n_, + H.) = 0 (13)

(C'.A.,.-- D'.At,.-- F'.A .... 1+ G '.A,,._, ) _,,_+

(C'.B...--D'.Bt..--F'.B .... ,+ G'.Bt,.__--H'.) =0

(14)

The stress at,,, is really arbitraw as far as equations (13)

and (14) are concerned because it depends upon the boundary
conditions and not on the equations of elasticity from which
equations (13) and (14) were derived; that is, by a suitable
ehoicc of the factors that determine boundary conditions,

such as blade loading and shrink fit,, at,_ can be set at any
desired value without invalidating in any way the equations

of elasticity (1) aim (7), or their ultimate finite-differen('e
forms in equations (13) aim (14). If an equation in the form
cx + d = 0 is to be true for all values of x, the coe_eients

c and d both must be zero. Because equations (13) aim (14)
are to be true, independent of the value of fit,a, the ('ocffi-

cients of fit.. must be zero, and the two equations reduce to

C'.A,,.--D .A,,.--F .A .... 1-_ -G ,tAt .... 1=0( (15)[

C.BT n-- D.B t _-- ti_B. ,__,--G_B t......,q-H==0_
!

! D f t ! fC _BT.=-- ,,Be._--F _B .... lq-G .B,.__I--H .,=01

from which A ..... At,., B ..... and Bt.,_ can be detc,'mined in
the form

A_..= K_A .... I + L_Ae. __, 1
!

At,.=K'.A .... t+L'.Ae,._t (
(16)(

B_, ,_=K,,B,, ._I+L.Bt.._1+11I. I
1

Bt. ,_=K'.B .... I+ E'nDt, n-1 + M',d

If the coefficients A .... At,,,, B ..... anti B,,_ arc known for
station n-l, they can be determined by means of equation
(16) for station n.

The coefficients at the first station (r=a) can be deter-.
mined by inspection for both the solid disk and the disk

with a central hole. Inspection of equation (12a) shows that
for a solid disk in which both the tangential and radiM

stresses at the first station are equal to fit,a

A_,a=Ae.a= 1

BT, a=Bt,.=0

For a disk with a central hole in which the radial stress

at the first station is zero and the tangential stress is fi_,_

A,,a=BT._=B_._=O

At.a=l

From these known coefficients at the first station, tile (:oeffi-
cients at all other stations can be determined by successive

applications of equation (16). Once all the coefficients have
been determined, tile unknown _,,_ e'm be determined.

The radial stress at the rim fi,,b is the centrifugal loading
of ttie blades

fiT,o=AT. bfi,.,_+ BT.,,

OF

fi_,_--B.,_ (17)
fit'a= Ar, b

where Ar,o and B,,_ are the coefficients for radial stress at
the rim. The radial and tangential stresses at all stations
can be obtained from equation (12a) after fit,_ and all the
coefficients have been determined.
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ILLUSTRATIVE APPLICATIONS

CASE 1--ELASTIC-STRESS DISTRIBUTION IN SOLID DISK

Tile profile of a disk that is to be analyzed for stress dis-
tribution at a speed of 11,500 rpm and the temperature

I

24 x/U °

_ 23 " \
h-

I 300 m,_22 \

_/_oo _

b

' I__.900 _ /8

800 "_ I

,/ °
700 __. _ /_

6oo OaJ. /'3 (,:t}

.39 x/O -_

/.38 _ / o o
(3 _-.._..

_.c
.37

/
<.a4 (oil --_-

.z3 _J (e)
0 2 4 8 8 I0 2. 4 G 8 I0

Radial disfance_ in.

(a) Disk profile: Case I, solid disk; Case n, disk with 1-inch central hole.
(b) Variation of temperature along disk radius.

(c) Variation of Poisson's ratio along disk radius.
(d) Variation of modulus of elasticity along disk radius.

(e) Variation of coefficient of thermal expansion along disk radius.

FI(_URE 2.--Disk profile,, temperature distribution, and variation of physical i_l'operties of

disk material as function of radius, for illustrative problems.

distribution of tile disk are strewn in figures 2 (a) and 2 (b),

respectively. The first star in the analysis is to choose
an arbitrary number of stations along the disk radius. The
first station is chosen at a radius of about 5 percent of the

rim radius, the last at the rim. The stations need not be

equidistant; in fact, it is advisable to choose the stations
closely together where there is sharp change in disk contour,
in temperature gradient, or in variation of physical proper-
ties. In this ease 18 stations were chosen, spaced relatively

close together near the rim where the gradients in tempera-
tare and physical properties were high and near the center
for subsequent use of the same example to illustrate the
effect of a central hole. When only a solid disk is considered,

no concentration of points near the center is necessary.

The various steps of the calculation are tabulated in table I.
The disk radius at each station is listed in column 1 of

table I. The thickness of the disk at each station is listed in

column 2. A sharp discontinuity in thickness, such as an

abrupt flange, should be faired in the disk contour and the
faired disk used in determining thickness.

Ordinarily the density of the material is constant through-
out the disk, even over the wide range of temperatures. If
a faired disk has been used, however, the density of the

material in the faired region should be adjusted to produce
the total mass that actually exists in the region of each

station. Although a flange does not reduce the stress at its

own region by increasing the area, its mass must be included

as it produces centrifugal stresses throughout the disk. The
corrected density at each station multiplied by the square

of the rotational speed is listed in column 3. In this case

no fairing was necessary; hence, all values of density are

equal.
Poisson's ratio, listed in cohunn 4, has only an insignificant

effect on the stress distribution and, because no accurate
data are available, a constant value of 0.333 may be used.
If accurate data on the variation with temperature of Pois-

son's ratio are available, use of the exact variable values

presents no greater difficulty than use of a constant value.
The values of _, used in this example are shown in figure 2 (c),
and were for convenience obtained by the assumption of a
linear variation in t* with temperature.

The modulus of elasticity at each station is listed in colunm

5. Variations in this property have a significant effect on
the final stress values and accurate data should be used if
available. For this example, E was arbitrarily assumed to

depend linearly upon the temperature, and the variation
along the radius is shown in figure 2 (d). In practical

computations, the true values of alas.tic modulus associated
with the particular temperature at each station may be used.

The coefficients of thermal expansion arc tabulated in
column 6. These coefficients must be the average values

applicaMe to the range between the telnperaturcs actually
existing and those at which there is no thermal stress. For

a homogeneous disk in which there is no shrink fitting of one
part to another, the condition of zero thermal stress is at
room temperature. Engineering tables usually list the

average temperature coefficient of expansion between room
temperature and vahtcs of high temperature ; the listed vahlcs

may therefore be used directly.
The difference between the actual tetnper'tture and the

temperature at which tliere is no thermal stress is listed in
column 7. In this case, the stress-free condition is at a room

temperature of 70 ° F. Column 7 is therefore obtained by
subtracting 70 ° F from each of the values in figure 2 (b).
This column is of great significance in the case involving
shrink fits.
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The quantities Ca to M'_ are computed for each station as
indicated in columns 8 to 34 of table I. Values in each of

these columns can be obtained in one set of operations on a

standard computing machine. The method of obtaining
the data from the suitable previous columns is indicated at

the heading of each column.
Values in columns 33 and 34 must be simultaneously

computed. The first value for each of these columns is

unity. Subsequent valuesmake use of the previously
obtained values in the same columns. Thus, to determine

the value for column 33 at station 2, column 27 at station 2

is multiplied by column 33 at station 1, and the product is

added to the product of column 28 at station 2 by column 34

at station 1. For example:

0.81902 }<1.0 + O.18098 }< 1.0 = 1.OOOO0

Columns 35 and 36 are likewise simultaneously computed.
The first value in each of these columns is zero and each

subsequent value is obtained from the previous values in
accordance with the symbolic notation given at the head of

each column. Thus, to obtain the column 35 at station 2,
column 27 at station 2 is multiplied by column 35 at station 1,
column 28 at station 2 is multiplied by column 36 at station 1,

and the two products arc then added to column 31 at
station 2

0.81902 X 0-_ 0.18098 X 0-- 67.192 = --67.192

Column 37 is uniform for all stations and is obtained from

the expression

_,._--(35)h

(33)_

where z,. i, is the blade loading at the rim. The blade loading
is obtained by dividing the total centrifugal force at the root
of tile blades by the total rim peripheral area. In this

problem z,.o is 8500 pounds per square inch; column 37 is

therefore,

8500--(--72,896) 49, nfln pounds per square inch

Columns 38 and 39 give the radial and tangential stresses,

respectively, at each of the stations. As indicated in table I,

they are obtained by routine multiplications and additions
of columns 33 to 37.

The radial and tangential stresses from columns 38 and 39

are plotted in figure 3. The stresses at the center of the disk
are taken equal to those at station a, which is }_inch removed
from the center.

Because the method presented is the only one known to
[hc author that takbYs into account point-to-point variation

in Poisson's ratio, the error involved in the assumption of a
constant value of this quantity as compared with the rigorous
treatment of its point-to-point variations is valuable to
determine. The broken-line curves in figure 3 show calcula-
tions for constant values of u--0.3 and it=0.5 compared

with the solid curves, which show thc stresses for a contin-

XIU °

0 2

J

Pol_son 'Srat_%

Var/ob/e

..........

\
\

4 6
Rodio/ d/stonce, in..

\
._ . . fi_Td/o/

I

8 /0

FIGURE 3.--Strl'ss distribution in solid disk of figure 2 compute;I with constant and wilh

variable values of Poisson's ratio.

uously variable value of _ with temperature, as shown in

figure 2 and tabulated in column 4 of table I. The near
coincidence of these curves indicates that the assumption of

a co_lstantvalue of tt within the range of actual values results
in a_curatc_final values of radial and tangential stresses.

The effect that difference in the number of stations h_,-;

on the accuracy of the results is shown in figure 4. Little
accuracy is gained by the use of additional points; as few

as six points in this particular case can yield accurate results
at a great saving in computing time.

CASEH--ELASTIC-STRESSDISTRIBUTIONIN DISK WITH CENTRALHOLE

A disk with a central hole is studied in a manner similar to

the solid disk except that the first station is taken at the in-

side boundary instead of at an arbitrary small distance as in
the solid disk. The choice of stations near the central hole

is, however, critical for this case. Stations should be taken
also at distances of 1, 2, 3, and 5 percent of the rim diameter
from the inside boundary of the disk. In order to illustrate

the procedure, the disk of figure 1 is again used but with a
central hole I inch in diameter, chosen so that station a will

be conveniently located in the same place as station a
for Case I.

Columns 1 to 32 for the disk of figure 2 (a) with the central
hole are identical to the corresponding cohtmns of table I
for the solid disk. In column 33 the entry for station a is 0

instead of 1 as for the solid disk; otherwise, the procedure for

calculating columns 33 to 39 is the same as that of table I.
Table II gives ttlc modified columns 33 to 39 that result from
changing the single first entry in cohimn 33 and figure 5
shows a plot of the resulting radial and tangential stresses;
the curves marked "18 stations" are the stress values for

this coinputatiou.
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FIGURE 4•--Effect on calculated stress distribution in disk of figure 2 of various numbers of

stations•

The results of supplementary calculations using different
numbers of stations (fig. 5) indicate that considerable error

can result in the determination of the peak stress at the inner
boundary if an insufficient number of. stations are chosen
near this boundary. A more judicious choice of stations for

the 6- and 10-station systems could produce more accurate
results than those shown; in the absence of experience in
choice of locations, however, it is better to choose a large

number of stations and insure accuracy.
A practical procedure used to reduce tile amount of cal-

culation necessary to obtain the critical end stresses is to
calculate the stress distribution on tile basis of a solid disk

using a few stations and then to modify the stresses in
the immediate vicinity of the central hole by the stress-
concentration factor characteristically introduced by the hole.

A comparison of figures 4 and 5 indicates that, with the ex-
ception of the region immediately adjacent to the central
hole, the stresses are similar for the cases of the solid disk

and of the disk with the central hole; this stress distribution
depends very little on the number of stations chosen. By

r(.,feren(,e 3 (fig. 145), for example, the characteristic stress
concentration for a disk with a central hole of which the

diameter is one-twentieth of the outside diameter is about
2.0. From cah-ulations based on different numbers of

stations, the calculated average stress at the center of tile

solid disk (fig. 4) is 43,000 pounds per square inctl. The
tangential stress at the inside boundary for the disk with the
central hole should therefore be 2X43,000=86,000 pounds

per square inch. The radial stress at a free boundary is,

TABLE II.--CALCULATION OF STRESSES IN DISK WITH

1-INCH CENTRAL HOLE

[Engine speed, 11,500 rpm; operating temperature, 1270 ° F at rim, 670 ° F at center]

.... Z__

-_X

3
4
5
6
7
8
9

I0
11
12

14 N
15
16
17

b

__3L__3_,__A5__

r= I T+

.A? IdadI
" I X _ X _

O 1.00O00
O. 18098 O.80981

• 27748 .71008
• 33507 .65110
• 37222 .61330

• 41585 .56746
• 43912 .54342 ,A
• 46208 .51858
• 53705 .52573 "_
• 61976 .56345 [..w
•67479 •59041
• 73691 .62339 a)
• 81907 .66319
• 86439 .69322

; . 86126 .70918
i .67632 .63141

• 76229 .6_940
• 93917 .70575

36

+_
;±

66

I o.i.

X

0
15, 618
23_ 905
28, 808
31,928
35, 469

- 37,195
38, 411

42,186
44, 848

46, 36547, 694
49, 525
48, 296
38, 471
18, 9911
13, 884
8, 500

39

+

g

86. 668
70, 157
61,474
56, 314
52, 980
48, 867
46, 610
43, 797
41,797
39. 705
37, 629
35, 002
31.11:_;
25,155
4. 844

--26, 188
--41,968
--57. 928.
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of course, zero. A curve faired between these botmdary
vahles and the general curves of figure 4 wouhl coincide very

closely with the 27-station result of figure 5.

CASE Ill--ELASTIC-STRESS DISTRIBUTION IN COMPOSITE WELDED DISKS

For some applications, turbine wheels must be fabricated

by we]ding parts composed of several materials. The
method of analysis presented is applicable to studies of

composite welded disks in which various alternatives of
boundary location and shrink interference can be investi-

gated with few changes in the tabulated computations. The
procedure is illustrated for a typical application in which

the boundary location is constant.
The disk of figure 2 (a) is assumed to be made in two parts

with the boundary at the 6-inch station. Figure 6 shows
tile two portions of the disk just before welding. The

heat-resisting outer portion is heated to 670 ° F while the
inner portion is maintained at 70 ° F. (In practice both

portions may be heated while maintaining a desired tempera-
ture differential.) At this temperature condition, an exact

fit exists between the mating tips of the two parts. The

wedge is then filled with weld metal.
The assumption is made that this temperature differential

between the two portions of the disk is maintained throughout
the welding process in making the calculations. Any cooling

of the outer region prior to the placement of the weld metal
would produce a crushing of the mating tips and reduce the
effective amount of shrink. Localized effects of the weld

metal in producing residual stresses are neglected. The
_alculations are made as if the high-temperature alloy, hav-

'ing full width at the mating face, is shrunk at 670 ° F onto
the full-width steel central portion. Table III shows the
essential tabulations for this case.

In order to insure accuracy, a few more stations than were
used in tables I and II have been chosen in the vicinity of

the boundary. The densities of the two materials are some-
what different. The quantities for _ and E are the values

at the temperatures of figure 2 (b). The quantity AT at
each station is the difference between the existing tempera-

ture and the temperature at which there is zero thermal
stress. The temperatures of zero thermal stress occur just
before the shrink fit when the outer portion is at 670 ° F and

the inner portion is at 70 ° F. Therefore, for the outer
portion 670 ° F is subtracted at each station from the tem-

peratm'es of figure 2 (b) and for the inner portion 70 ° F is
sul)tracted. The value of a at each station must he the

average a between the stress-free temperatul'e an([ the operat-

ing temperature. At the rim, for example, an average
coefficient of expansion between 670 ° and 1270 ° F must be
used. The average temperature coefficient ,_ -2 applicable to

the range between any two temperatures T, and T2 can be
found by

a'2 T'_--a', T't
at_2= (T2-- T,) (1 + a', T',)

_here a'_ an(l a'.2 are tim average coeffi<,ients of thernml ex-

I)ansion bet,ween room len)peralure and l he temper_ttures

7'f and T2, respeclively, and 7"1 and T'2 are the teml)erattn'e
differences between 7'_ and 71; and room temperature.

The procedure of calculating table IH froln cohunn 8 on
is similar to that of table I. The final calculated values of

stress are shown in figure 6.

Comparison of figures 5 and 6 shows that a shrink fit,
unless excessive, can have beneficial effects. The shrink fit
reduces the tangential tensile stresses that exist near the
central hole under operating conditions and also the tangen-

tial compressive stress at the rim. Compressive stresses at
the rim can be detrimental. If the elastic compressive stresses

exceed the yield strength of the material, plastic flow takes

place and a residual tangential tensile stress exists after

e/o/ [
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FIGURE 6.--_Lross(!S a[, rulllling conditioiIs of speed _I/d t;(!lllp(!r_ttur(, ill eomi)osiLe w(,l([(.l|

disk. ToIllper_tHr¢, of operating rim section duriIlg welding, 670 ° F; t(_IIll}('l'iLL(lI'(" of Ot'[1-

tral section, 70° F.

operation. Because the region of the rim is a stress-
eoncentrateIl area as a result of the blade attachments, even

relatively small residual tensile stress may cause cracks.
The shrink fit removes the high tensile stress at the center

and the high compressive stress at the rim but introduces a

high tensile stress at tim boimdary of the two fitted regions.
The houndary is at. a lower running temperature and has no
st ress-concentr'tting eft'eels of the blade attachments.

The opt ilrum an:oun t of sh fin k, however, is fairly ('ril ical.

Probably tlie shrink of tile illustrative examl)le is excessive.
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Tllere is no need to reduce the stresses at the hole and at the

rim as much as shown in figure 6 at the expense of such a
high stress at the boundary. An additional calculation can

readily be made by using a smaller temperature difference
of shrinking than assumed in this calculation. Only col-

umns 6, 7, 24, 31, 32, and 35 to 39 are affected by any change,
and the redistribution of stress can be calculated very. rap-
idly. Thus, a more suitable shrink fit can readily be found.

CASE IV--CHECK ON ADEQUACY OF METHOD

Checks on the adequacy of the method were obtained by
('omparing the results of finite-difference calculations to

theoretically correc, t results in several cases where the latter

(.ould be obtained. In one case a parallel-sided disk was

studied. The conditions of operation are shown in figure 7,

120 x 103

o_1_
d

-40 q

-8O

\
Pad�o� stress by fin/fe-
d/fference me fhod \

__ n Tangent�a� stress by fin�re-

- g/efOre%/ence/ 7_/f27/dOn of .fre_ses_

2 4 6 8 /0
Red�o� dl's tonce, I'n.

FIGURE 7.--Comparison between theoretical and finite-difference-solution stresses in parallel-

sided disk of 20-inch diameter rotating at 10,000 rpm with temperature gradient that varies

as fourth power of radius from 600 ° F at center to 1200 ° F at rim. E, 30XI06 pounds per

square inch; a, 8XI0-_ (in./(in.)(°F)); _, 0.3.

the circles and squares show the radial and tangential
stresses as determined by the finite-difference method,

respectively; and the solid lines show the theoretically
correct stresses obtained by rigorous solution of equations
(1) and (7) for this case in which E, a, and _ are constant.

This correlation is seen to be very good. The maximum
deviation occurs at the boundary of the central hole where the

difference between the tangential stress as computed by the
finite-difference method and the theoretically correct value
is about 2 percent. The average deviation between the
theoretical and finite-difference stresses throughout the disk

is less than 4-h / percent. Checks on a solid disk produced
closer agreement, even when a small number of stations was

used. A check on a disk of uniform strength produced
results differing from the exact solution in the order of :t: _4/

percent of the theoretical stresses throughout the entire disk.

CONCLUSIONS

The finite-difference method of calculating stresses in
rotating disks has been applied extensively to various types
of turbine disk under different conditions of constant terns.

perature or with a temperature gradient. The procedure
was found to be convenient and rapid. Where checks were

available, the results showed a high degree of accuracy.

FLIGHT PROPULSION RESEARCH LABORATORY,

NATIONAL _kDVISORY COMMITTEE FOR AERONAUTICS,

CLEVELAND, OHIO, FEBRUARY 27, 19_7.
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